Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Bacterial community structure of the marine diatom Haslea ostrearia
Autores:  Lepinay, Alexandra
Capiaux, Herve
Turpin, Vincent
Mondeguer, Florence
Lebeau, Thierry
Data:  2016-06
Ano:  2016
Palavras-chave:  Biofilm
Ecology
Metabolic fingerprinting
Microalgae
Phycosphere
TTGE
Resumo:  Haslea ostrearia produces a water-soluble, blue-green pigment, called marennine, with proven economic benefits (as a bioactive compound used to green oysters, which improves their market value). Incomplete knowledge of the ecological features of this marine diatom complicates its cultivation. More specifically, the ecology of bacteria surrounding H. ostrearia in ponds is what remains unknown. The structure of this bacterial community was previously analyzed by means of PCR-TTGE before and after isolating H. ostrearia cells recovered from 4 localities in order to distinguish the relative parts of the biotope and biocenose and to describe the temporal dynamics of the bacterial community structure at two time scales (2 weeks vs. 9 months). The bacterial structure of the phycosphere differed strongly from that of bulk sediment. The level of similarity between bacteria recovered from the biofilm and suspended bacteria did not exceed 10%. On the other hand, similarities among the bacterial community structures in biofilms were above 90% regardless of the geographic origin of the algal isolates, while the percentages were lower for suspended bacteria. The differences in bacterial structures of two H. ostrearia isolates (HO-R and HO-BM) resulted in specific metabolomic profiles. The nontargeted metabolomic investigation revealed more distinct profiles in the case of this bacteria-alga association than for the H. ostrearia monoculture. At the culture cycle scale under laboratory conditions, the bacterial community depended on the growth stage. When H. ostrearia was subcultured for 9 months, a shift in the bacterial structure was observed as of 3 months, with the bacterial structure stabilizing afterwards (70%–86% similarities), in spite of the size reduction of the H. ostrearia frustule. Based on these results, an initial insight into the relationships between H. ostrearia and its surrounding bacteria could be drawn, leading to a better understanding of the ecological feature of this marine diatom.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00326/43737/43344.pdf

DOI:10.1016/j.algal.2016.04.011

https://archimer.ifremer.fr/doc/00326/43737/
Editor:  Elsevier Science Bv
Formato:  application/pdf
Fonte:  Algal Research-biomass Biofuels And Bioproducts (2211-9264) (Elsevier Science Bv), 2016-06 , Vol. 16 , P. 418-426
Direitos:  2016 Published by Elsevier Ltd.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional